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Two-photon laser-scanning microscopy (TPLSM) and spinal cord preparation were performed 

as described previously11,12,57. The procedures are briefly summarized below. TPLSM was used 

to image the motility and infiltration of fluorescently labelled TMBP and TOVA cells in the spinal 

cord of living rats. In addition, the technique was used to analyze BBB permeability. Imaging 

of TMBP  cells was performed in the preclinical phase, at the onset and the peak of EAE. 

Surgical procedures 

The animals were pre-anesthetized with a subcutaneous injection of 75 mg kg-1 ketamine 

(Medistar) combined with 0.5 mg kg-1 medetomidin (Vetpharm). Subsequently, they were 

intubated via a small incision of the trachea and immediately ventilated with 1.5 – 2% of 

isoflurane (CP-Pharma). During imaging, rats were stabilized in a custom-made microscope 

stage and their body temperature was regulated and maintained (36 – 37 °C) via a heated pad 

connected to a custom-built thermocontroller. Fluid supply during imaging sessions was 

maintained using a perfusing device (Ismatec) set to a 0.6 mL/h-1 flow rate. Thoracic 

leptomeninges were accessed as described12,57 by performing a laminectomy at level Th12/L1 

and carefully removing the dura mater.  

Technical equipment and labelling procedures  

TPLSM imaging was performed as previously described11,12,57 using two different systems: (1) 

a Zeiss Laser Scanning Microscope 710 (Carl Zeiss) combined with a Coherent 10 W 

Ti:Sapphire chameleon laser (Coherent), controlled by Zeiss ZEN 2012 SP2 v2.1 software; and 

(2) an Olympus FVMPE-RS TPLSM equipped with a Spectra-Physics Mai Tai Ti:Sapphire 

oscillator and a Mai Tai DeepSee Ti:Sapphire oscillator. The excitation wavelength was tuned 

to 880 nm or 1,010 nm and routed through a 20x water 1.0 NA immersion objective W Plan 

Apochromat (Carl Zeiss) or a 25x water 1.05 NA immersion objective Olympus Scaleview. 

Excitation at 1,100 nm was propagated by either using a Ti:Sapphire laser pumped OPO in the 

Zeiss TPLSM or a Mai Tai DeepSee Ti:Sapphire oscillator in the Olympus TPLSM. Emitted 
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